Two modes of microsatellite instability in human cancer: differential connection of defective DNA mismatch repair to dinucleotide repeat instability

نویسندگان

  • Shinya Oda
  • Yoshihiko Maehara
  • Yoichi Ikeda
  • Eiji Oki
  • Akinori Egashira
  • Yoshikazu Okamura
  • Ikuo Takahashi
  • Yoshihiro Kakeji
  • Yasushi Sumiyoshi
  • Kaname Miyashita
  • Yu Yamada
  • Yan Zhao
  • Hiroyoshi Hattori
  • Ken-ichi Taguchi
  • Tatsuro Ikeuchi
  • Teruhisa Tsuzuki
  • Mutsuo Sekiguchi
  • Peter Karran
  • Mitsuaki A. Yoshida
چکیده

Microsatellite instability (MSI) is associated with defective DNA mismatch repair in various human malignancies. Using a unique fluorescent technique, we have observed two distinct modes of dinucleotide microsatellite alterations in human colorectal cancer. Type A alterations are defined as length changes of < or =6 bp. Type B changes are more drastic and involve modifications of > or =8 bp. We show here that defective mismatch repair is necessary and sufficient for Type A changes. These changes were observed in cell lines and in tumours from mismatch repair gene-knockout mice. No Type B instability was seen in these cells or tumours. In a panel of human colorectal tumours, both Type A MSI and Type B instability were observed. Both types of MSI were associated with hMSH2 or hMLH1 mismatch repair gene alterations. Intriguingly, p53 mutations, which are generally regarded as uncommon in human tumours of the MSI+ phenotype, were frequently associated with Type A instability, whereas none was found in tumours with Type B instability, reflecting the prevailing viewpoint. Inspection of published data reveals that the microsatellite instability that has been observed in various malignancies, including those associated with Hereditary Non-Polyposis Colorectal Cancer (HNPCC), is predominantly Type B. Our findings indicate that Type B instability is not a simple reflection of a repair defect. We suggest that there are at least two qualitatively distinct modes of dinucleotide MSI in human colorectal cancer, and that different molecular mechanisms may underlie these modes of MSI. The relationship between MSI and defective mismatch repair may be more complex than hitherto suspected.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

سه موتاسیون ژرم لاین جدید در ژن MLH1 در بیماران مبتلا به سرطان کولورکتال ارثی

Abstract Background: Hereditary non-polyposis colorectal cancer is the most common cause of early onset of hereditary colorectal cancer. In the majority of Hereditary non-polyposis colorectal cancer families, microsatellite instability and germline mutation in one of the DNA mismatch repair genes in clouding MSH2, MLH1, MSH6 and PMS2 are found. The Objective of this study was to determine th...

متن کامل

Molecular Analysis of Microsatellite Instability in Hereditary Non Polyposis Colon Carcinoma Patients from North-East Iran

  Background and Objectives: Hereditary nonpolyposis colorectal cancer (HNPCC) is an autosomal dominant cancer predisposition syndrome caused by germ-line mutations in DNA mismatch repair genes. Tumors arising as a result of these mutations display instability in a sequence area known as microsatellites. Studies have shown that some Bethesda markers (BAT25, BAT26) are more efficient than other...

متن کامل

Microsatellite instability in gynecological sarcomas and in hMSH2 mutant uterine sarcoma cell lines defective in mismatch repair activity.

We have examined a panel of gynecological sarcomas for microsatellite instability. The genomic DNA from 11 of 44 sarcomas contained somatic alterations in the lengths of one or more di-, tri-, tetra-, or pentanucleotide microsatellite sequence markers, and 6 of these cases had alterations in two or more markers. In addition, di-, tri-, and tetranucleotide microsatellites were found to be highly...

متن کامل

Frequent microsatellite instability in primary small cell lung cancer.

Alterations in microsatellite sequences characterize hereditary nonpolyposis colorectal cancer. This microsatellite instability is due in some kindreds to a germline mutation of the mismatch repair gene hMSH2 on chromosome 2p. Although microsatellite alterations have been reported in other hereditary nonpolyposis colorectal cancer-associated tumors including endometrial and gastric cancers, suc...

متن کامل

hMRE11 deficiency leads to microsatellite instability and defective DNA mismatch repair.

DNA mismatch repair (MMR) is essential in the surveillance of accurate transmission of genetic information, and defects in this pathway lead to microsatellite instability and hereditary nonpolyposis colorectal cancer (HNPCC). Our previous study raised the possibility that hMRE11 might be involved in MMR through physical interaction with hMLH1. Here, we show that hMRE11 deficiency leads to signi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nucleic Acids Research

دوره 33  شماره 

صفحات  -

تاریخ انتشار 2005